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1. IntrodutionHigher order tensor deompositions are in frequent use today in a variety of �elds inluding psyho-metri, hemometris, image analysis, graph analysis and signal proessing Kolda (2006). Tensorsalso alled multidimensional matries or multi-way arrays are higher order generalizations of ve-tors (�rst order tensors) and matries (seond order tensors), i.e. X 2 C I1�I2�:::�IN . The twomost ommonly used deompositions of higher order tensors are the PARAFAC (also known asCANDECOMP) Carroll and Chang (1970)Harshman (1970) and the Tuker model Tuker (1966).The Tuker model is given as the deompositionXi1;i2;:::;iN � Li1;i2;:::;iN = Xj1j2:::jN Gj1;j2;:::;jNA(1)i1;jlA(2)i2;j2 � ::: �A(N)iN ;jN :where G 2 C J1�J2�:::�JN and A(n) 2 C In�Jn . By the use of the n-mode tensor produt �n given by(Q�n P)i1;i2;:::;jn;:::iN =Xin Qi1;i2;:::;in;:::iNPjn;in ;the model an also be stated asX � L = G �1 A(1) �2 A(2) �3 :::�N A(N)Consequently, in the Tuker model the nth modality is spanned by the vetors given by the olumnsof A(n) while the vetors of eah modality interat with the strength given by the ore tensor Gto reonstrut the data. As a result, the Tuker model aount for all possible linear interationaross the vetors of the various modalities. The PARAFAC model is a speial ase of the Tukermodel where the size of eah modality of the ore array G is the same, i.e. J1 = J2 = ::: = JN whilethe only interation are between olumns of same indies suh that the only non-zero elements arealong the hyper-diagonal, i.e. Gj1;j2;:::;jN 6= 0 i� j1 = j2 = ::: = jN . Thus, the Tuker model isless restrited than the PARAFAC model. As a result, the Tuker model is not as the PARAFACmodel in general unique Kruskal (1977); Sidiropoulos and Bro (2000) sine a rotation of A(n) anbe ompensated by a ounter rotation of the ore G, i.e. G �n A(n) = (G �n P�1) �n (A(n)P). Inthe following X ab will denote a tensor of the modalities a ontaining data of type b.Lately, the Tuker model has among others been applied to� spetrosopy data (Smilde et al. (2004); Andersson and Bro (1998) for instane XBath number�Time�SpetraStrengthGurden et al. (2001); Nørgaard and Ridder (1994); Smilde et al. (1999))� web mining (XUsers�Queries�Wep pagesClik ounts Sun et al. (2005))� image analysis (XPeople�V iews�Illuminations�Expressions�PixelsImage intensity Vasilesu and Terzopoulos (2002);Wang and Ahuja (2003); Jia and Gong (2005) XClass�Digits�PixelsImage intensity Savas and Eldén (submit-ted))� semanti di�erential data (X Judges�Musi piees�SalesGrade Murakami and Kroonenberg (2003))Common for all the data sets above is that they are all non-negative and the basis vetors/projetionsA(n) and interations G with good reason ould have been assumed additive, i.e. non-negative.Due to the huge amount of data often present when dealing with tensors the e�ay of thealgorithms used to estimate the Tuker model is of outmost importane Andersson and Bro (1998).Traditionally the Tuker model has been estimated using various alternating least square algorithmswhere the olumns of A(n) most often are assumed orthogonal Andersson and Bro (1998). Reently,an e�ient algorithm for higher order singular value deomposition (HOSVD) based on solving Neigenvalue problems to estimate the Tuker model has been introdued Lathauwer et al. (2000). For2



the above mentioned data sets HOSVD was the most ommonly used. Although algorithms for non-negative Tuker deompositions exist Bro and Andersson (2000) the deompositions are ontraryto HOSVD not in general unique. Consequently, the lak of uniqueness hampers interpretability ofpotentially non-negative deompositions. For this reason the existing non-negative Tuker deom-positions have been unattrative. Presently, we will develop e�ient algorithms for non-negativeTuker deompositions based on easy implementable multipliative updates, i.e. a higher ordernon-negative matrix fatorization (HONMF) based on the approah of non negative matrix fator-ization (NMF) Lee and Seung (2000). To ahieve unique deompositions we will inorporate sparsityonstraints to the HONMF as suggested for NMF by Eggert and Korner (2004).The paper is strutured as follows: First the algorithms for HONMF will be derived inludingupdates for sparsity onstraints. Next, the algorithms abilities to identify the omponents of asynthetially generated data set will be demonstrated. Finally, the algorithm will be tested on adata set of wavelet transformed EEG-data previously explored by the PARAFAC model Mørup et al.(2006) and data obtained from a �ow injetion analysis Nørgaard and Ridder (1994); Smilde et al.(1999). The uniqueness of the deompositions of these data will be evaluated. Sine the HOSVDreently has been the method the most employed, the urrent sparse HONMF will be ontrasted tothis algorithm. The existing algorithms for non-negative Tuker deompositions Bro and Andersson(2000); Bro and Jong (1997) give deompositions similar to the unonstrained HONMF based onLS.2. MethodLee and Seung gave two algorithms for (NMF) Lee and Seung (2000). They further showed hownon-negative deompositions ontrary to PCA/SVD give a part based representation Lee and Seung(1999). Reently, NMF has been extended to the PARAFAC deompositions FitzGerald et al.(2005); Parry and Essa (2006); Welling and Weber (2001); Mørup et al. (2006). However, to ourknowledge no previous work has adapted the NMF approah to the Tuker model.Consider the non-negative matrix fatorization (NMF) problem Lee and Seung (2000):V � � =WHwhere V 2 RI�J ,W 2 RI�D , and H 2 RD�J are non-negative. Lee and Seung (2000) devised twoalgorithms to �nd W and H: For the least square error (LS) and the Kullbak-Leibler divergene(KL) they proved that the reursive updates given at the top of Table 1 onverge to a loal minimum.These algorithms an be derived by minimizing the ost funtion using a gradient based searh withstep sizes appropriately hosen to give multipliative updates.However, the NMF deomposition is apart from trivial permutation and saling not in generalunique Donoho and Stodden (2003). If the data does not adequately span the positive orthant arotation of the solution is possible violating uniqueness. Consequently, onstraints in the form ofsparseness has proven useful Hoyer (2002, 2004); Eggert and Korner (2004). Eggert and Korner(2004) derived an e�ient algorithm for Sparse NMF based on multipliative updates by penalizingvalues in H by a funtion Csparse(H) while keeping W normalized suh that the sparsity is notahieved by simply lettingH go to zero whileW goes to in�nity. Making the reonstrution invariantof this normalization, i.e. e� = fWH where fWi;d = Wi;dpPiWi;d = Wi;dkWdk2 they found the multipliativeupdates for the LS-algorithm further adapted to the KL algorithm Mørup and Shmidt (2005) givenat the bottom of Table 1.In the following we will onsider the Tuker model under non-negativity onstraint, i.e X , G andA(n) are all non-negative. By turning 'matriziing' X I1�I2�:::�IN into a matrix, i.e. XIn�I1:::In�1In+1:::IN(n)the Tuker model an be expressed in matrix notation asX(n) � �(n) = A(n)G(n)(A(N) 
 :::
A(n+1) 
A(n�1) 
 :::
A(1)) = A(n)Z(n);3



CLS(V;�) = 12Pij(Vi;j ��i;j)2 CKL(V;�) =Pij Vi;j logVi;j�i;j �V +�i;jW W � VHT�HT H H �WTVWT� W  W � V�HT1 �HT ; H H � WTV�WT � 1CSparseLS = CLS(V; e�) + �Csparse(H) CSparseKL = CKL(V; e�) + �Csparse(H)W fW � VHT + fWdiag(1 � e�HT � fW)e�HT + fWdiag(1 � eVHT � fW)H H � fWTVfWTe�+� �Csparse(H)�H W fW � Ve�HT + fWdiag(1 �HT � fW)1 �HT + fWdiag(1 � Ve�HT � fW)H H � fWT Ve�fWT�1+� �Csparse(H)�HTable 1: The NMF updates (top) and Sparse NMF updates (bottom) given for LS in left olumnand KL in right olumn. Csparse(H) is the funtion used to penalize the elements in H. Inthe following analysis we'll use Csparse(H) = kHk1. Consequently �Csparse(H)�H = 1. A � Band AB denotes element-wise multipliation and division respetively while fWi;d = Wi;dkWdk2and e� = fWH.where Z(n) = G(n)(A(N) 
 :::
A(n+1) 
A(n�1) 
 :::
A(1))T . As a result, the updates of eah ofthe fators A(n) follows straight forward from the regular NMF updates by exhangingW with Aand H with Z in theW update.By lexiographial indexing of the elements in X and G, i.e. ve(X ) and ve(G) also the problemof �nding the ore G an be formulated in the framework of fator analysis Kolda (2006):ve(X ) � ve(L) = Ave(G)Where A = A(1) 
 A(2) 
 ::: 
 A(N). Consequently, also the update of G follows by the regularNMF updates exhangingW with A and H with ve(G) in the H update. Finally, this update anbe expressed in terms of the n-mode multipliation sineAT ve(X ) = ve(X �1 A(1)T �2 A(2)T �3 :::�N A(N)T ):The algorithms for HONMF are summarized in Table 2. Here diag(v) is a matrix having the vetorv along the diagonal while 1 and T is a matrix and a tensor having ones in all indies.Aording to the Sparse NMF some modalities an be kept sparse while the rest are normalized.Consequently, eah or some of the A(n) an be onstrained sparse and/or G, while re-normalizing theore and/or the other A(n). As a result sparseness an be imposed on any ombination of modalitiesinluding the ore while normalizing the remaining modalities. In Table 2 the updates are givenwhen sparsifying or normalizing a given modality. Here kGkF =qPj1j2::::jN G2j1;j2;:::;jN that is k�kFis the regular Frobenious norm for matries and tensors respetively as de�ned in Kolda (2006) whilekGk1 =Pj1j2::::jN Gj1;j2;:::;jN . When normalizing eah of the updated A(n)'s should be normalizedafter being updated, i.e. eAin;d = Ain;dkAdkF while the ore normalized by eG = GkGkF .Notie,CLS(X(1);�(1)) = CLS(X(2);�(2)) = ::: = CLS(X(N);�(N)) = CLS(veX ;Ave(G))CKL(X(1);�(1)) = CKL(X(2);�(2)) = ::: = CKL(X(N);�(N)) = CKL(veX ;Ave(G)):Consequently eah of the updates above minimizes the same ost funtion. As a result, the onver-gene of the algorithms for HONMF without sparseness follow straight forward from the onvergene4



HONMF based on Least squares1. Initialize all A(n) and the ore array Grandomly.2. For all n do�(n) = A(n)Z(n)A(n)  A(n) � X(n)ZT(n)�(n)ZT(n)3. L = G �1 A(1) �2 A(2) �3 :::�N A(N)B = X �1 A(1)T �2 A(2)T �3 :::�N A(N)TC = L �1 A(1)T �2 A(2)T �3 :::�N A(N)TG  G � BC4. Repeat from step 2 until some onvergeneriterion has been satis�ed

HONMF based on KL-divergene1. Initialize all A(n) and the ore array Grandomly.2. For all n do�(n) = A(n)Z(n)A(n)  A(n) �  X(n)�(n) !ZT(n)�(n)ZT(n)3. L = G �1 A(1) �2 A(2) �3 ::: �N A(N)D = XL �1 A(1)T �2A(2)T �3 :::�N A(N)TE = T �1 A(1)T �2 A(2)T �3 ::: �N A(N)TG  G � DE4. Repeat from step 2 until some onvergeneriterion has been satis�ed.Table 2: Algorithms for HONMF based on LS and KL minimization.
Normalized SparseLS A(n)  eA(n) � X(n)ZT+eA(n)diag(1�e�(n)ZT �eA(n))e�(n)ZT+eA(n)diag(1�X(n)ZT �eA(n)) A(n)  A(n) � X(n)ZT(n)�(n)ZT(n)+� �Csparse(A(n))�A(n)KL A(n)  eA(n) � 0�X(n)e�(n)1AZT+eA(n)diag(1�1Z�eA(n))e�(n)ZT+eA(n)diag(1� X(n)�(n) !ZT � eA(n)) A(n)  A(n) �  X(n)�(n) !ZT(n)�(n)ZT(n)+� �Csparse(A(n))�A(n)LS G  eG � B+ eGkC� eGk1C+ eGkB� eGk1 G  G � BC+� �Csparse(G)�GKL G  eG � D+eGkE� eGk1E+ eGkD�eGk1 G  G � DE+� �Csparse(G)�GTable 3: Updates when normalizing or imposing sparseness on the various modalities
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of the regular NMF updates given in Lee and Seung (2000) sine the estimation was formulated as aseries of regular fator analysis problems minimizing the same ost funtion. However, the updatesinluding sparseness has not yet been proved for regular NMF. Eggert and Korner (2004) and Mørupand Shmidt (2005) onjetured respetively the sparse LS and KL algorithms to be onvergent. Al-though extensively tested we also never experiened any divergene of the updates above inludingsparseness.The presently developed algorithms for HONMF are attrative for several reasons.� The developed algorithms an yield unique non-negative deomposition by �nding the sparsestrepresentation of any ombination of modalities.� Often the tensor data has a lot of elements being zero Sun et al. (2005). Sine the NMFupdates are very tratable (i.e. no need for matrix inversion or eigenvalue deompositions) thealgorithms are easily adapted to onsider only the non-zero elements in X .� Contrary to the HOSVD struture an be fored into the model forming a supervised algorithm.For instane the ore or some of the ore elements an be �xed to fore known interationsinto the model.� Eah iteration of the HONMF is O(I1I2 � ::: � INJ1J2 � ::: � JN ) i.e. grows linearly with theprodut of the size of X and G making the ost per iteration relatively heap ompared toexisting algorithms for non-negative Tuker deomposition requiring an iterative hek of theviolation of non-negativity Bro and Andersson (2000); Bro and Jong (1997).� Contrary to HOSVD the vetors aross modalities interat in the estimation proess. As aresult, omitting vetors will hange the existing vetors to aount for more of the data.� The NMF is known to luster the data rather than projeting the data onto the dimensions a-ounting for most variane Lee and Seung (1999). This in many situations improves omponentinterpretability.Needless to say, the algorithms only works when data are non-negative and the omponents andinterations are onsidered purely additive. Admittedly, NMF is known to su�er from slow onver-gene Salakhutdinov et al. (2003). Consequently, the overall speed of the HONMF algorithm is notbetter than the existing non-unique algorithms.3. ResultsThe algorithms were tested on a syntheti data set onsisting of 5 images of logial operators mixedthrough two modalities. The �ve images forming the third modality along with the mixing matriesof the two �rst modalities were reated suh that no rotational ambiguity was present between thefators and the Core. The Core was generated by uniform(0; 1) random numbers. The result ofthe deomposition of the syntheti data an be seen in Figure 1The algorithms were also tested on a data set ontaining the inter trial phase oherene (ITPC)obtained from wavelet transformed eletroenephalographi (EEG) data. This data set has pre-viously been analyzed using PARAFAC and a detailed desription of the data set an be foundin Mørup et al. (2006). Brie�y stated it onsist of 14 subjet reorded during a proprioep-tive stimuli onsisting of a weight hange of right hand during odd trials and left hand duringeven trials giving a total of 14 � 2 = 28 trials. Consequently, the data has the following formXChannel�Time�Frequeny�TrialsITPCvalue . The results of a Tuker 3-3-3 model an be seen on Figure 2 whilean evaluation of the uniqueness of the deompositions is given in Table 4Finally, the algorithms were tested on a data set of XSpetra�Time�BathStrength obtained from a �owinjetion analysis (FIA) system, see Nørgaard and Ridder (1994); Smilde et al. (1999). The data set6



Figure 1: Examples of results obtained when analyzing the syntheti data. Leftmost panel: Thetrue omponents forming the synthethi data. Middle left panel: Components obtainedby the HONMF algorithm based on LS (� = 0 range of data [0;380℄). Middle right panel:Components obtained by the HONMF algorithm based on KL. Rightmost panel: Compo-nents obtained by HONMF based on KL with sparseness on the three fator modalities(� = 1). All deompositions aounts for more than 99.99% of the variane. While the LSalgorithm almost perfetly identi�es all omponents the KL algorithm has problems iden-tifying the omponents of modality 2 however, imposing sparseness the algorithm betteridenti�es the omponents.

Figure 2: Analysis of the ITPC data of EEG onsisting of 14 subjets undergoing weight hange ofright hand during odd trials and left hand during even trials. Leftmost panel: Exampleof result obtained when analyzing the data using HONMF. Middle left panel: Resultwhen imposing sparseness on the ore (� = 1, range of data [0;0.4℄). Middle right panel:The results obtained from the PARAFAC model orresponding to a �xed Core havingones along the super diagonal. Rightmost panel: The results obtained using HOSVD.Clearly, the HONMF model approahes the PARAFAC model as sparseness is imposedon the Core. While the HONMF aounts for 49.3 % of the variane the sparse HONMFaounts for 49.11 % of the variane whereas the PARAFAC model aounts for 48.9 %of the variane.Finally, the HOSVD aounts for 58.9 % of the variane.
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Channel :F1 : 0:7416�0:2990(0:3743�0:1352)F2 : 0:8453�0:1032(0:3328�0:0897)F3 : 0:8401�0:0945(0:3976�0:0814)Time� Frequeny :F1 : 0:8906�0:1937(0:3175�0:0867)F2 : 0:9317�0:0716(0:3077�0:0674)F3 : 0:9313�0:0729(0:3126�0:0851)Trials :F1 : 0:9268�0:0910(0:4050�0:1131)F2 : 0:9538�0:0480(0:4055�0:1215)F3 : 0:8661�0:1609(0:4835�0:0965)Core :0:7420�0:1048(0:2853�0:1776)Explained variane :0:4912�0:0027

Channel :F1 : 0:9464�0:0471(0:3427�0:0949)F2 : 0:9492�0:0541(0:3932�0:1072)F3 : 0:9595�0:0381(0:3660�0:1116)Time� Frequeny :F1 : 0:9753�0:0212(0:3111�0:0378)F2 : 0:9258�0:1254(0:3108�0:0378)F3 : 0:9368�0:1312(0:3277�0:0484)Trials :F1 : 0:9657�0:0222(0:3465�0:1702)F2 : 0:9585�0:1485(0:4852�0:0674)F3 : 0:9664�0:1161(0:4620�0:0674)Core :0:9139�0:0383(0:2793�0:1244)Explained variane :0:4909�0:0017

Channel :F1 : 1:000�0:000(0:3813�0:1400)F2 : 1:000�0:000(0:3636�0:1631)F3 : 1:000�0:000(0:3417�0:1072)Time � Frequeny :F1 : 1:000�0:000(0:2812�0:0380)F2 : 1:000�0:000(0:3259�0:0661)F3 : 1:000�0:000(0:3329�0:0555)Trials :F1 : 1:000�0:000(0:4268�0:1402)F2 : 1:000�0:000(0:3897�0:1815)F3 : 1:000�0:000(0:3947�0:1375)Core :0:6963�0:3535(0:3473�0:1470)Explained variane :0:3695�0:0000

Channel :F1 : 1:000�0:000(0:3428�0:1195)F2 : 1:000�3:4700:000(0:3657�0:1406)F3 : 1:000�3:3870:000(0:3914�0:1305)Time� Frequeny :F1 : 1:000�0:000(0:3327�0:0398)F2 : 1:000�0:000(0:3288�0:0417)F3 : 1:000�0:000(0:2935�0:0210)Trials :F1 : 1:000�0:000(0:3681�0:0972)F2 : 1:000�0:000(0:4116�0:1434)F3 : 1:000�0:000(0:4507�0:1347)Core :0:3561�0:1493(0:3094�0:1141)Explained variane :�0:2600�0:0000Table 4: Mean orrelation between the fators of 10 runs with sparseness imposed on the ore arrayranging from 0 to 100 here given for LS. In parenthesis are the orrelations obtained by ran-dom (estimated by permutating the indies of the fators and alulating their orrelation).Clearly imposing sparseness improves uniqueness (orrelation between eah deomposition)however if the sparseness imposed on the ore is too strong all fators beomes identialonly apturing the mean ativity while the ore is arbitrary due to the idential fators).The KL algortihm gave similar results.

Figure 3: The result obtained analyzing the FIA data by a Tuker 6-6-6 model based on LS withsparsity on the Core and mixing modality (� = 0:5). 10 deompositions all resulted invery onsistent results - mean orrelation between the various omponents of eah modality0:9847� 0:0396(0:4008� 0:1736). Furthermore, the estimated mixing was orrelated by0:9550� 0:0648(0:3258� 0:1863) to the true mixing. The 10 deompositions on averageexplained 0:9972� 0:0007 of the variane.8



has been analyzed through various supervised models using among other the prior knowledge of theonentration in eah bath Nørgaard and Ridder (1994); Smilde et al. (1999). However, presentlywe employed a sparse HONMF to see if this algorithm ould apture the underlying struture inthe data unsupervised. To give an easy interpretable model and improve uniqueness of the bathonentrations found sparseness was imposed on both the ore and bath modality (� = 0:5, rangeof data [0;0.637℄) The results of the sparse Tuker 6-6-6 deomposition is given in Figure 34. DisussionFrom the HONMF deomposition of the synthetially generated data set it was seen that the KL butespeially LS aptured well the true omponents. Although the fators found slightly deviate fromthe true fators espeially on modality 2 imposing sparseness on the fators improved the algorithmsability to orretly identify the omponents as revealed for the KL results.In the analysis of the ITPC of EEG data, it was seen in Table 4 that eah unonstrained HONMFdeomposition only was orrelated by about 70-90%. However, when imposing sparseness on theore a more unique deomposition was ahieved hene a orrelation well above 90% between theomponents of the Fators and Core of the 10 deompositions while only slightly a�eting theexplained variane. However, by inreasing sparseness too muh only the mean ativity was apturedin all the omponents. Consequently the fators were all perfetly orrelated to eah other whilethe ore ould be arbitrarily hosen as long as the sum of the ore elements remained the same.It was further seen that imposing sparseness on the data made the deomposition resemble theorresponding PARAFAC deomposition. This indiates that the PARAFAC deomposition ratherthan the full Tuker model is a reasonable model to the data. Consequently, the Tuker modelwith sparsity imposed on the ore an indiate wether a PARAFAC or a Tuker model is the mostreasonable model to the data at hand. Although the HOSVD aounts for more variane sineanellation of fators are allowed, the deomposition is di�ult to interpret. While the last fatorin the trial modality learly di�erentiates between left and right side stimulation and the seond andthird salp omponent di�erentiates between frontal parietal and left right ativity the interpretationof the interations between these omponents are di�ult to resolve from the omplex pattern ofinteration given by the ore. Consequently, although the HONMF model aounts for less varianeit is easier to interpret sine it learly gives a more part based deomposition.Finally, the analysis of the FIA data gave a very onsistent deomposition. By imposing sparse-ness on the ore and Bath modality the model aptured well the true onentrations in the bathas well as giving a sparse Core improving the interpretatibility. Consequently, imposing sparsenessould turn of unneessary exess fators as well as apturing the true struture in the data unsu-pervised rather than resorting to supervised approahes as previously done Nørgaard and Ridder(1994); Smilde et al. (1999) presently apturing well the true onentrations in the bathes.Admittedly, the present HONMF has two drawbak. The hoies of � is not obvious while tosome extent impating the deompositions found. Furthermore, NMF and therefore also HONMF isknown to su�er from slow onvergene Salakhutdinov et al. (2003). Presently, the algorithmss wereaelerated as proposed for NMF by Salakhutdinov et al. (2003).5. ConlusionIt is our strong belief that the HONMF algorithms proposed will be useful in the analysis of a varietyof higher order data. Presently, the HONMF gave a more easy interpretable deomposition than theHOSVD. Furthermore, imposing onstraints of sparseness signi�antly improved the uniqueness ofthe deomposition as well as being a tool for model seletion.
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