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Abstract

Higher order matrix (tensor) decompositions, are in frequent use today in a variety of fields in-
cluding psychometric, chemometrics, image analysis, graph analysis and signal processing. For
these higher order data the two most commonly used decompositions are the PARAFAC (also
known as CANDECOMP) and the Tucker model. Often the data analyzed is non-negative and
with good reason the components can also be assumed non-negative and their interactions addi-
tive. While the Tucker decomposition has been dominated by algorithms such as the Higher Order
Singular Value Decomposition (HOSVD) the use of existing algorithms for non-negative Tucker
decompositions has been limited since these decomposition does not in general yield unique de-
compositions. Presently, we extend the approach of Non-negative Matrix Factorization (NMF) to
form algorithms for non-negative Tucker decomposition. Namely, a Higher Order NMF (HONMF).
To improve uniqueness of the decompositions we develop updates that can impose sparseness in
any combination of modalities. The algorithms for HONMF are tested on synthetic as well as real
data revealing how sparseness indeed significantly improves uniqueness of the decomposition while
also being useful for model selection.

Keywords: Tucker decomposition, Higher Order Non-negative Matrix Factorization (HONMF),
Sparse Coding, PARAFAC, HOSVD.



1. Introduction

Higher order tensor decompositions are in frequent use today in a variety of fields including psycho-
metric, chemometrics, image analysis, graph analysis and signal processing Kolda (2006). Tensors
also called multidimensional matrices or multi-way arrays are higher order generalizations of vec-
tors (first order tensors) and matrices (second order tensors), i.e. X € Ch>*[2>X-xIN_ The two
most commonly used decompositions of higher order tensors are the PARAFAC (also known as
CANDECOMP) Carroll and Chang (1970)Harshman (1970) and the Tucker model Tucker (1966).
The Tucker model is given as the decomposition
Xihig,...,iN ~ L:il,z'27...7iN = Z le,ﬁ,...,jNAEll?jlAgf?]é TR AEI]\Y)]N

Jij2...Jn
where G € CT1xJ2%-xJIn and AW ¢ CI»*7» By the use of the n-mode tensor product x,, given by

(Q X0 Plisin,juyin = E Qi yineryinserin P sins
i

the model can also be stated as
XaL=0Gx AD x5 A® x5 xy AW

Consequently, in the Tucker model the n** modality is spanned by the vectors given by the columns
of A" while the vectors of each modality interact with the strength given by the core tensor G
to reconstruct the data. As a result, the Tucker model account for all possible linear interaction
across the vectors of the various modalities. The PARAFAC model is a special case of the Tucker

model where the size of each modality of the core array G is the same, i.e. J; = J> = ... = Jy while
the only interaction are between columns of same indices such that the only non-zero elements are
along the hyper-diagonal, i.e. Gj, j,. iy # 0iff j1 = jo = ... = jn. Thus, the Tucker model is

less restricted than the PARAFAC model. As a result, the Tucker model is not as the PARAFAC
model in general unique Kruskal (1977); Sidiropoulos and Bro (2000) since a rotation of A(™) can
be compensated by a counter rotation of the core G, i.e. G x, AW = (G x, P~1) x,, (A™WP). In
the following A} will denote a tensor of the modalities a containing data of type b.

Lately, the Tucker model has among others been applied to

Batch numberxTimeXx Spectra

e spectroscopy data (Smilde et al. (2004); Andersson and Bro (1998) for instance Xg;;.p,0 /4
Gurden et al. (2001); Ngrgaard and Ridder (1994); Smilde et al. (1999))

o web mining (XSS X@ueriesxWep pages qup ot al. (2005))

. . PeoplexViewsx Illuminations X Expressionsx Pizels . .
e image analysis (X7,,,0c intensity Vasilescu and Terzopoulos (2002);

Wg;l)g and Ahuja (2003); Jia and Gong (2005) Xfé‘;;ixigzzit;ifypi“ls Savas and Eldén (submit-
te

o semantic differential data (X 09esxMusic piecesxSeales\fy1alami and Kroonenberg (2003))
Common for all the data sets above is that they are all non-negative and the basis vectors/projections
A™ and interactions G with good reason could have been assumed additive, i.e. non-negative.

Due to the huge amount of data often present when dealing with tensors the efficacy of the
algorithms used to estimate the Tucker model is of outmost importance Andersson and Bro (1998).
Traditionally the Tucker model has been estimated using various alternating least square algorithms
where the columns of A(™) most often are assumed orthogonal Andersson and Bro (1998). Recently,
an efficient algorithm for higher order singular value decomposition (HOSVD) based on solving N
eigenvalue problems to estimate the Tucker model has been introduced Lathauwer et al. (2000). For



the above mentioned data sets HOSVD was the most commonly used. Although algorithms for non-
negative Tucker decompositions exist Bro and Andersson (2000) the decompositions are contrary
to HOSVD not in general unique. Consequently, the lack of uniqueness hampers interpretability of
potentially non-negative decompositions. For this reason the existing non-negative Tucker decom-
positions have been unattractive. Presently, we will develop efficient algorithms for non-negative
Tucker decompositions based on easy implementable multiplicative updates, i.e. a higher order
non-negative matrix factorization (HONMF) based on the approach of non negative matrix factor-
ization (NMF) Lee and Seung (2000). To achieve unique decompositions we will incorporate sparsity
constraints to the HONMF as suggested for NMF by Eggert and Korner (2004).

The paper is structured as follows: First the algorithms for HONMF will be derived including
updates for sparsity constraints. Next, the algorithms abilities to identify the components of a
synthetically generated data set will be demonstrated. Finally, the algorithm will be tested on a
data set of wavelet transformed EEG-data previously explored by the PARAFAC model Mgrup et al.
(2006) and data obtained from a flow injection analysis Ngrgaard and Ridder (1994); Smilde et al.
(1999). The uniqueness of the decompositions of these data will be evaluated. Since the HOSVD
recently has been the method the most employed, the current sparse HONMF will be contrasted to
this algorithm. The existing algorithms for non-negative Tucker decompositions Bro and Andersson
(2000); Bro and Jong (1997) give decompositions similar to the unconstrained HONMF based on
LS.

2. Method

Lee and Seung gave two algorithms for (NMF) Lee and Seung (2000). They further showed how
non-negative decompositions contrary to PCA /SVD give a part based representation Lee and Seung
(1999). Recently, NMF has been extended to the PARAFAC decompositions FitzGerald et al.
(2005); Parry and Essa (2006); Welling and Weber (2001); Mgrup et al. (2006). However, to our
knowledge no previous work has adapted the NMF approach to the Tucker model.

Consider the non-negative matrix factorization (NMF) problem Lee and Seung (2000):

Va~A=WH

where V € RI*Y W € REXP | and H € RP*/ are non-negative. Lee and Seung (2000) devised two
algorithms to find W and H: For the least square error (LS) and the Kullback-Leibler divergence
(KL) they proved that the recursive updates given at the top of Table 1 converge to a local minimum.
These algorithms can be derived by minimizing the cost function using a gradient based search with
step sizes appropriately chosen to give multiplicative updates.

However, the NMF decomposition is apart from trivial permutation and scaling not in general
unique Donoho and Stodden (2003). If the data does not adequately span the positive orthant a
rotation of the solution is possible violating uniqueness. Consequently, constraints in the form of
sparseness has proven useful Hoyer (2002, 2004); Eggert and Korner (2004). Eggert and Korner
(2004) derived an efficient algorithm for Sparse NMF based on multiplicative updates by penalizing
values in H by a function Csperse (H) while keeping W normalized such that the sparsity is not
achieved by simply letting H go to zero while W goes to infinity. Making the reconstruction invariant

of this normalization, i.e. A = WH where W, 4 = \/zvjvvil = HVV:IIZﬁz they found the multiplicative
i Wi

updates for the LS-algorithm further adapted to the KL algorithm Mgrup and Schmidt (2005) given
at the bottom of Table 1.

In the following we will consider the Tucker model under non-negativity constraint, i.e X', G and
Iy xIy... I 1lnq1... 0N

(n)

A™ are all non-negative. By turning 'matrizicing’ X7t %2> *IN into a matrix, i.e. X
the Tucker model can be expressed in matrix notation as

Xy & Ay = AMG AN @ g AT @ A g o Al) = AMZ ),



Crs(V,A)=35,;(Vij— Ai;)? Cxi(V.A) =3, Vijloggt =V + Ay
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Table 1: The NMF updates (top) and Sparse NMF updates (bottom) given for LS in left column
and KL in right column. Cjpqrse (H) is the function used to penalize the elements in H. In
the following analysis we’ll use Csparse (H) = ||H||1. Consequently BC%TH”(H) =1. AeB

Wi 4
[[Wall2

and % denotes element-wise multiplication and division respectively while VA\J/'M =
and A = WH.

where Z(,,) = G(,) (AN @ ..@ AT @ A= @ @ AM)T. As a result, the updates of each of
the factors A(™) follows straight forward from the regular NMF updates by exchanging W with A
and H with Z in the W update.

By lexicographical indexing of the elements in X’ and G, i.e. vec(X) and vec(G) also the problem
of finding the core G can be formulated in the framework of factor analysis Kolda (2006):

vec(X) =~ vee(L) = Avec(G)

Where A = AW © A® @ .. ® AN Consequently, also the update of G follows by the regular
NMF updates exchanging W with A and H with vec(G) in the H update. Finally, this update can
be expressed in terms of the n-mode multiplication since

ATvec(X) = vee(X x1 AV x5 A@" x5 xy AT,

The algorithms for HONMF are summarized in Table 2. Here diag(v) is a matrix having the vector
v along the diagonal while 1 and 7 is a matrix and a tensor having ones in all indices.

According to the Sparse NMF some modalities can be kept sparse while the rest are normalized.
Consequently, each or some of the A(™) can be constrained sparse and/or G, while re-normalizing the
core and/or the other A" As a result sparseness can be imposed on any combination of modalities
including the core while normalizing the remaining modalities. In Table 2 the updates are given

that is ||« ||r

Jisj2yenin
is the regular Frobenious norm for matrices and tensors respectively as defined in Kolda (2006) while
Gl = >25,)s.. jw Girsizsin- When normalizing each of the updated A()’s should be normalized
g

when sparsifying or normalizing a given modality. Here ||G||r = \/Zjle....jN G?

after being updated, i.e. Kimd = HAAiTnl,‘i while the core normalized by G =

. [GlF-
Notice,
Crs(X), Ap)) = Crs(X(z), A) = ... = Crs(X(n), Avy) = Crs(vecX’, Avec(G))
CKL(X(l);A(l)) ZCKL(X(Q),A(Q)) = ...ZOKL(X(N),A(N)) = CKL(’UECX,A’Uec(g)).

Consequently each of the updates above minimizes the same cost function. As a result, the conver-
gence of the algorithms for HONMF without sparseness follow straight forward from the convergence



HONMF based on Least squares

. Initialize all A™ and the core array G

randomly.

. For all n do

Ay = AMZ, ;
A A ¢ 0 Z0)

Azl

CL=Gx1 AD xy A® x5 xy AN

B=X X1 A(I)TT X9 A(Q)TT X3 ... XN A(N)TT
C=Lx1 AW x5 A®" xq . xy AW
g %gog

. Repeat from step 2 until some convergence

criterion has been satisfied

HONMF based on KL-divergence

1. Initialize all A and the core array G
randomly.

2. For all n do
Apy = A Z,

xn
< ( )>Z(Tn)
A(n)

A2l

AW A o

3. L=0Gx1 AM x9 A® x5 .. xy AN

D = % X1 A(I)T X9 A(2)T X3 ... XN A(N)T
E=T x1 AV x, A®T %y xy AT
g(—gog

Repeat from step 2 until some convergence
criterion has been satisfied.

Table 2: Algorithms for HONMF based on LS and KL minimization.

Normalized Sparse
— T LA™ diag(1-A ToA(™) X 7T
A ZT +A(M) diag(1-X(, ZT e Al T dCsparse(A(?))
(n) (n) A(")Z(n)+ﬁ )
X n _ ~
=2 ) 2T 1AM diag(1-1ZeA (™)) X(n) 2T
~ An) An) (n)
KL | AW« A o — A A o —
A A ; ) X 9Csparse(Alm))
A(n)ZT+A(")dzag(1- m)ZT.A(")) A(")Z?‘nﬁ»ﬁW
=~  B+G||CeG
LS G Go—t—ilL GG -
C+GlIBeGll c+p BCSPEE“(Q)
~  D+G||EeG
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Table 3: Updates when normalizing or imposing sparseness on the various modalities




of the regular NMF updates given in Lee and Seung (2000) since the estimation was formulated as a
series of regular factor analysis problems minimizing the same cost function. However, the updates
including sparseness has not yet been proved for regular NMF. Eggert and Korner (2004) and Mgrup
and Schmidt (2005) conjectured respectively the sparse LS and KL algorithms to be convergent. Al-
though extensively tested we also never experienced any divergence of the updates above including
sparseness.

The presently developed algorithms for HONMF are attractive for several reasons.

e The developed algorithms can yield unique non-negative decomposition by finding the sparsest
representation of any combination of modalities.

e Often the tensor data has a lot of elements being zero Sun et al. (2005). Since the NMF
updates are very tractable (i.e. no need for matrix inversion or eigenvalue decompositions) the
algorithms are easily adapted to consider only the non-zero elements in X'

e Contrary to the HOSVD structure can be forced into the model forming a supervised algorithm.
For instance the core or some of the core elements can be fixed to force known interactions
into the model.

e Each iteration of the HONMF is O(I1I5 -« ... - InJyJa - ... - Jy) i.e. grows linearly with the
product of the size of X and G making the cost per iteration relatively cheap compared to
existing algorithms for non-negative Tucker decomposition requiring an iterative check of the
violation of non-negativity Bro and Andersson (2000); Bro and Jong (1997).

e Contrary to HOSVD the vectors across modalities interact in the estimation process. As a
result, omitting vectors will change the existing vectors to account for more of the data.

e The NMF is known to cluster the data rather than projecting the data onto the dimensions ac-
counting for most variance Lee and Seung (1999). This in many situations improves component
interpretability.

Needless to say, the algorithms only works when data are non-negative and the components and
interactions are considered purely additive. Admittedly, NMF is known to suffer from slow conver-
gence Salakhutdinov et al. (2003). Consequently, the overall speed of the HONMF algorithm is not
better than the existing non-unique algorithms.

3. Results

The algorithms were tested on a synthetic data set consisting of 5 images of logical operators mixed
through two modalities. The five images forming the third modality along with the mixing matrices
of the two first modalities were created such that no rotational ambiguity was present between the
factors and the Core. The Core was generated by uniform(0,1) random numbers. The result of
the decomposition of the synthetic data can be seen in Figure 1

The algorithms were also tested on a data set containing the inter trial phase coherence (ITPC)
obtained from wavelet transformed electroencephalographic (EEG) data. This data set has pre-
viously been analyzed using PARAFAC and a detailed description of the data set can be found
in Mgrup et al. (2006). Briefly stated it consist of 14 subject recorded during a propriocep-
tive stimuli consisting of a weight change of right hand during odd trials and left hand during
even trials giving a total of 14 - 2 = 28 trials. Consequently, the data has the following form

chg,,hﬂgzzlligimefﬁeq"mcyXT”“ls. The results of a Tucker 3-3-3 model can be seen on Figure 2 while
an evaluation of the uniqueness of the decompositions is given in Table 4
Finally, the algorithms were tested on a data set of Xgﬁiﬁ;thT’mEXB“tCh obtained from a flow

injection analysis (FTA) system, see Ngrgaard and Ridder (1994); Smilde et al. (1999). The data set
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Figure 1: Examples of results obtained when analyzing the synthetic data. Leftmost panel: The
true components forming the synthethic data. Middle left panel: Components obtained
by the HONMF algorithm based on LS (8 = 0 range of data [0;380]). Middle right panel:
Components obtained by the HONMF algorithm based on KL. Rightmost panel: Compo-
nents obtained by HONMF based on KL with sparseness on the three factor modalities
(8 =1). All decompositions accounts for more than 99.99% of the variance. While the LS
algorithm almost perfectly identifies all components the KL algorithm has problems iden-
tifying the components of modality 2 however, imposing sparseness the algorithm better
identifies the components.
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Figure 2: Analysis of the ITPC data of EEG consisting of 14 subjects undergoing weight change of
right hand during odd trials and left hand during even trials. Leftmost panel: Example
of result obtained when analyzing the data using HONMF. Middle left panel: Result
when imposing sparseness on the core (8 = 1, range of data [0;0.4]). Middle right panel:
The results obtained from the PARAFAC model corresponding to a fixed Core having
ones along the super diagonal. Rightmost panel: The results obtained using HOSVD.
Clearly, the HONMF model approaches the PARAFAC model as sparseness is imposed
on the Core. While the HONMF accounts for 49.3 % of the variance the sparse HONMF
accounts for 49.11 % of the variance whereas the PARAFAC model accounts for 48.9 %
of the variance.Finally, the HOSVD accounts for 58.9 % of the variance.



3 0 T 10 100
Channel : Channel : Channel : Channel :
F1:0.741640.2990 F1:0.946440.0471 F1:1.00040.000 F1:1.00040.000
(0.374340.1352) (0.3427+0.0949) (0.3813+£0.1400) (0.3428+0.1195)
F2:0.845340.1032 F2:0.9492+40.0541 2:1.000£0.000 2:1.00043.4700.000
(0.332840.0897) (0.393240.1072) (0.3636+£0.1631) (0.3657+£0.1406)
F3:0.8401£0.0945 F3:0.959540.0381 3:1.00040.000 3:1.00043.3870.000
(0.397640.0814) (0.3660+0.1116) (0.3417+40.1072) (0.3914+£0.1305)
Time — Frequency : Time — Frequency : Time — Frequency : Time — Frequency :
F1:0.800640.1937 F1:0.97534+0.0212 F1:1.00040.000 F1:1.00040.000
(0.317540.0867) (0.311140.0378) (0.2812+0.0380) (0.3327+0.0398)
F2:0.931740.0716 F2:0.92584+0.1254 2:1.00040.000 2:1.00040.000
(0.307740.0674) (0.3108+0.0378) (0.3259+0.0661) (0.3288+0.0417)
F3:0.931340.0729 F3:0.936840.1312 3:1.00040.000 3:1.00040.000
LS (0.312640.0851) (0.3277+0.0484) (0.3329+40.0555) (0.2935+0.0210)
Trials : Trials : Trials : Trials :
F1:0.926840.0910 F1:0.965740.0222 F1:1.000£0.000 F1:1.00040.000

(0.405040.1131)
F2:0.953840.0480

(0.405540.1215)
F3:0.866140.1609

(0.483540.0965)

(0.3465+0.1702)
F2 :0.9585+0.1485
(0.4852+0.0674)
F3:0.9664+0.1161
(0.4620+0.0674)

(0.4268+0.1402)
2:1.00040.000

(0.3897+0.1815)
3:1.00040.000

(0.3947+0.1375)

(0.3681+0.0972)
2:1.00040.000

(0.4116+0.1434)
3:1.00040.000

(0.4507+0.1347)

Core :
0.3561+0.1493
(0.3094+0.1141)

Core :
0.6963+0.3535
(0.3473+0.1470)

Core :
0.9139+0.0383
(0.27934+0.1244)

Core :
0.742040.1048
(0.285340.1776)

Explained variance :
0.369540.0000

Explained variance :
—0.26004+0.0000

Explained variance :
0.491240.0027

Explained variance :
0.490940.0017

Table 4: Mean correlation between the factors of 10 runs with sparseness imposed on the core array

ranging from 0 to 100 here given for LS. In parenthesis are the correlations obtained by ran-
dom (estimated by permutating the indices of the factors and calculating their correlation).
Clearly imposing sparseness improves uniqueness (correlation between each decomposition)
however if the sparseness imposed on the core is too strong all factors becomes identical
only capturing the mean activity while the core is arbitrary due to the identical factors).
The KL algortihm gave similar results.

Modality 1 Real mixing
04 04 04 04 04 04
03 03 03 03 03 03
02 02 02 02 02 02
0.1 0.1 01 01 01 01
0 0 0 0 0 0
300 400 30 400 300 400 300 400 30 40 300 400
Modality 2 Wavelength
02 02 02 02 02 02
0.15 0.15 0.15 0.15 0.15 0.15
01 01 (A 01 01 0.1
005 0.05 005 0.05 0.05 005
o 0 o 0 o 0
20 40 B0 80 20 40 60 80 20 40 60 80 , 20 40 60 80 20 40 60 80 20 40 60 80

Figure 3: The result obtained analyzing the FIA data by a Tucker 6-6-6 model based on LS with

sparsity on the Core and mixing modality (8 = 0.5). 10 decompositions all resulted in
very consistent results - mean correlation between the various components of each modality
0.9847 + 0.0396(0.4008 & 0.1736). Furthermore, the estimated mixing was correlated by
0.9550 £ 0.0648(0.3258 & 0.1863) to the true mixing. The 10 decompositions on average
explained 0.9972 4+ 0.0007 of the variance.



has been analyzed through various supervised models using among other the prior knowledge of the
concentration in each batch Ngrgaard and Ridder (1994); Smilde et al. (1999). However, presently
we employed a sparse HONMF to see if this algorithm could capture the underlying structure in
the data unsupervised. To give an easy interpretable model and improve uniqueness of the batch
concentrations found sparseness was imposed on both the core and batch modality (8 = 0.5, range
of data [0;0.637]) The results of the sparse Tucker 6-6-6 decomposition is given in Figure 3

4. Discussion

From the HONMF decomposition of the synthetically generated data set it was seen that the KL but
especially LS captured well the true components. Although the factors found slightly deviate from
the true factors especially on modality 2 imposing sparseness on the factors improved the algorithms
ability to correctly identify the components as revealed for the KL results.

In the analysis of the ITPC of EEG data, it was seen in Table 4 that each unconstrained HONMF
decomposition only was correlated by about 70-90%. However, when imposing sparseness on the
core a more unique decomposition was achieved hence a correlation well above 90% between the
components of the Factors and Core of the 10 decompositions while only slightly affecting the
explained variance. However, by increasing sparseness too much only the mean activity was captured
in all the components. Consequently the factors were all perfectly correlated to each other while
the core could be arbitrarily chosen as long as the sum of the core elements remained the same.
It was further seen that imposing sparseness on the data made the decomposition resemble the
corresponding PARAFAC decomposition. This indicates that the PARAFAC decomposition rather
than the full Tucker model is a reasonable model to the data. Consequently, the Tucker model
with sparsity imposed on the core can indicate wether a PARAFAC or a Tucker model is the most
reasonable model to the data at hand. Although the HOSVD accounts for more variance since
cancellation of factors are allowed, the decomposition is difficult to interpret. While the last factor
in the trial modality clearly differentiates between left and right side stimulation and the second and
third scalp component differentiates between frontal parietal and left right activity the interpretation
of the interactions between these components are difficult to resolve from the complex pattern of
interaction given by the core. Consequently, although the HONMF model accounts for less variance
it is easier to interpret since it clearly gives a more part based decomposition.

Finally, the analysis of the FTA data gave a very consistent decomposition. By imposing sparse-
ness on the core and Batch modality the model captured well the true concentrations in the batch
as well as giving a sparse Core improving the interpretatibility. Consequently, imposing sparseness
could turn of unnecessary excess factors as well as capturing the true structure in the data unsu-
pervised rather than resorting to supervised approaches as previously done Ngrgaard and Ridder
(1994); Smilde et al. (1999) presently capturing well the true concentrations in the batches.

Admittedly, the present HONMF has two drawback. The choices of 5 is not obvious while to
some extent impacting the decompositions found. Furthermore, NMF and therefore also HONMF is
known to suffer from slow convergence Salakhutdinov et al. (2003). Presently, the algorithmss were
accelerated as proposed for NMF by Salakhutdinov et al. (2003).

5. Conclusion

It is our strong belief that the HONMF algorithms proposed will be useful in the analysis of a variety
of higher order data. Presently, the HONMF gave a more easy interpretable decomposition than the
HOSVD. Furthermore, imposing constraints of sparseness significantly improved the uniqueness of
the decomposition as well as being a tool for model selection.
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