
Algorithms for Sparse Higher Order Non-negative MatrixFa
torization (HONMF)Morten Mørupwww.imm.dtu.dk/�mmInformati
s and Mathemati
al ModellingTe
hni
al University of DenmarkRi
hard Petersens plads, building 321DK-2800 Kgs Lyngby, Denmarkmm�imm.dtu.dkLars Kai HansenInformati
s and Mathemati
al ModellingTe
hni
al University of DenmarkRi
hard Petersens plads, building 321DK-2800 Kgs Lyngby, Denmarklkh�imm.dtu.dkSidse M. ArnfredDepartment of Psy
hiatryHvidovre hospitalUniversity Hospital of Copenhagen, Denmarksidse.arnfred�hh.hosp.dkEditor: n/a Abstra
tHigher order matrix (tensor) de
ompositions, are in frequent use today in a variety of �elds in-
luding psy
hometri
, 
hemometri
s, image analysis, graph analysis and signal pro
essing. Forthese higher order data the two most 
ommonly used de
ompositions are the PARAFAC (alsoknown as CANDECOMP) and the Tu
ker model. Often the data analyzed is non-negative andwith good reason the 
omponents 
an also be assumed non-negative and their intera
tions addi-tive. While the Tu
ker de
omposition has been dominated by algorithms su
h as the Higher OrderSingular Value De
omposition (HOSVD) the use of existing algorithms for non-negative Tu
kerde
ompositions has been limited sin
e these de
omposition does not in general yield unique de-
ompositions. Presently, we extend the approa
h of Non-negative Matrix Fa
torization (NMF) toform algorithms for non-negative Tu
ker de
omposition. Namely, a Higher Order NMF (HONMF).To improve uniqueness of the de
ompositions we develop updates that 
an impose sparseness inany 
ombination of modalities. The algorithms for HONMF are tested on syntheti
 as well as realdata revealing how sparseness indeed signi�
antly improves uniqueness of the de
omposition whilealso being useful for model sele
tion.Keywords: Tu
ker de
omposition, Higher Order Non-negative Matrix Fa
torization (HONMF),Sparse Coding, PARAFAC, HOSVD.
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1. Introdu
tionHigher order tensor de
ompositions are in frequent use today in a variety of �elds in
luding psy
ho-metri
, 
hemometri
s, image analysis, graph analysis and signal pro
essing Kolda (2006). Tensorsalso 
alled multidimensional matri
es or multi-way arrays are higher order generalizations of ve
-tors (�rst order tensors) and matri
es (se
ond order tensors), i.e. X 2 C I1�I2�:::�IN . The twomost 
ommonly used de
ompositions of higher order tensors are the PARAFAC (also known asCANDECOMP) Carroll and Chang (1970)Harshman (1970) and the Tu
ker model Tu
ker (1966).The Tu
ker model is given as the de
ompositionXi1;i2;:::;iN � Li1;i2;:::;iN = Xj1j2:::jN Gj1;j2;:::;jNA(1)i1;jlA(2)i2;j2 � ::: �A(N)iN ;jN :where G 2 C J1�J2�:::�JN and A(n) 2 C In�Jn . By the use of the n-mode tensor produ
t �n given by(Q�n P)i1;i2;:::;jn;:::iN =Xin Qi1;i2;:::;in;:::iNPjn;in ;the model 
an also be stated asX � L = G �1 A(1) �2 A(2) �3 :::�N A(N)Consequently, in the Tu
ker model the nth modality is spanned by the ve
tors given by the 
olumnsof A(n) while the ve
tors of ea
h modality intera
t with the strength given by the 
ore tensor Gto re
onstru
t the data. As a result, the Tu
ker model a

ount for all possible linear intera
tiona
ross the ve
tors of the various modalities. The PARAFAC model is a spe
ial 
ase of the Tu
kermodel where the size of ea
h modality of the 
ore array G is the same, i.e. J1 = J2 = ::: = JN whilethe only intera
tion are between 
olumns of same indi
es su
h that the only non-zero elements arealong the hyper-diagonal, i.e. Gj1;j2;:::;jN 6= 0 i� j1 = j2 = ::: = jN . Thus, the Tu
ker model isless restri
ted than the PARAFAC model. As a result, the Tu
ker model is not as the PARAFACmodel in general unique Kruskal (1977); Sidiropoulos and Bro (2000) sin
e a rotation of A(n) 
anbe 
ompensated by a 
ounter rotation of the 
ore G, i.e. G �n A(n) = (G �n P�1) �n (A(n)P). Inthe following X ab will denote a tensor of the modalities a 
ontaining data of type b.Lately, the Tu
ker model has among others been applied to� spe
tros
opy data (Smilde et al. (2004); Andersson and Bro (1998) for instan
e XBat
h number�Time�Spe
traStrengthGurden et al. (2001); Nørgaard and Ridder (1994); Smilde et al. (1999))� web mining (XUsers�Queries�Wep pagesCli
k 
ounts Sun et al. (2005))� image analysis (XPeople�V iews�Illuminations�Expressions�PixelsImage intensity Vasiles
u and Terzopoulos (2002);Wang and Ahuja (2003); Jia and Gong (2005) XClass�Digits�PixelsImage intensity Savas and Eldén (submit-ted))� semanti
 di�erential data (X Judges�Musi
 pie
es�S
alesGrade Murakami and Kroonenberg (2003))Common for all the data sets above is that they are all non-negative and the basis ve
tors/proje
tionsA(n) and intera
tions G with good reason 
ould have been assumed additive, i.e. non-negative.Due to the huge amount of data often present when dealing with tensors the e�
a
y of thealgorithms used to estimate the Tu
ker model is of outmost importan
e Andersson and Bro (1998).Traditionally the Tu
ker model has been estimated using various alternating least square algorithmswhere the 
olumns of A(n) most often are assumed orthogonal Andersson and Bro (1998). Re
ently,an e�
ient algorithm for higher order singular value de
omposition (HOSVD) based on solving Neigenvalue problems to estimate the Tu
ker model has been introdu
ed Lathauwer et al. (2000). For2



the above mentioned data sets HOSVD was the most 
ommonly used. Although algorithms for non-negative Tu
ker de
ompositions exist Bro and Andersson (2000) the de
ompositions are 
ontraryto HOSVD not in general unique. Consequently, the la
k of uniqueness hampers interpretability ofpotentially non-negative de
ompositions. For this reason the existing non-negative Tu
ker de
om-positions have been unattra
tive. Presently, we will develop e�
ient algorithms for non-negativeTu
ker de
ompositions based on easy implementable multipli
ative updates, i.e. a higher ordernon-negative matrix fa
torization (HONMF) based on the approa
h of non negative matrix fa
tor-ization (NMF) Lee and Seung (2000). To a
hieve unique de
ompositions we will in
orporate sparsity
onstraints to the HONMF as suggested for NMF by Eggert and Korner (2004).The paper is stru
tured as follows: First the algorithms for HONMF will be derived in
ludingupdates for sparsity 
onstraints. Next, the algorithms abilities to identify the 
omponents of asyntheti
ally generated data set will be demonstrated. Finally, the algorithm will be tested on adata set of wavelet transformed EEG-data previously explored by the PARAFAC model Mørup et al.(2006) and data obtained from a �ow inje
tion analysis Nørgaard and Ridder (1994); Smilde et al.(1999). The uniqueness of the de
ompositions of these data will be evaluated. Sin
e the HOSVDre
ently has been the method the most employed, the 
urrent sparse HONMF will be 
ontrasted tothis algorithm. The existing algorithms for non-negative Tu
ker de
ompositions Bro and Andersson(2000); Bro and Jong (1997) give de
ompositions similar to the un
onstrained HONMF based onLS.2. MethodLee and Seung gave two algorithms for (NMF) Lee and Seung (2000). They further showed hownon-negative de
ompositions 
ontrary to PCA/SVD give a part based representation Lee and Seung(1999). Re
ently, NMF has been extended to the PARAFAC de
ompositions FitzGerald et al.(2005); Parry and Essa (2006); Welling and Weber (2001); Mørup et al. (2006). However, to ourknowledge no previous work has adapted the NMF approa
h to the Tu
ker model.Consider the non-negative matrix fa
torization (NMF) problem Lee and Seung (2000):V � � =WHwhere V 2 RI�J ,W 2 RI�D , and H 2 RD�J are non-negative. Lee and Seung (2000) devised twoalgorithms to �nd W and H: For the least square error (LS) and the Kullba
k-Leibler divergen
e(KL) they proved that the re
ursive updates given at the top of Table 1 
onverge to a lo
al minimum.These algorithms 
an be derived by minimizing the 
ost fun
tion using a gradient based sear
h withstep sizes appropriately 
hosen to give multipli
ative updates.However, the NMF de
omposition is apart from trivial permutation and s
aling not in generalunique Donoho and Stodden (2003). If the data does not adequately span the positive orthant arotation of the solution is possible violating uniqueness. Consequently, 
onstraints in the form ofsparseness has proven useful Hoyer (2002, 2004); Eggert and Korner (2004). Eggert and Korner(2004) derived an e�
ient algorithm for Sparse NMF based on multipli
ative updates by penalizingvalues in H by a fun
tion Csparse(H) while keeping W normalized su
h that the sparsity is nota
hieved by simply lettingH go to zero whileW goes to in�nity. Making the re
onstru
tion invariantof this normalization, i.e. e� = fWH where fWi;d = Wi;dpPiWi;d = Wi;dkWdk2 they found the multipli
ativeupdates for the LS-algorithm further adapted to the KL algorithm Mørup and S
hmidt (2005) givenat the bottom of Table 1.In the following we will 
onsider the Tu
ker model under non-negativity 
onstraint, i.e X , G andA(n) are all non-negative. By turning 'matrizi
ing' X I1�I2�:::�IN into a matrix, i.e. XIn�I1:::In�1In+1:::IN(n)the Tu
ker model 
an be expressed in matrix notation asX(n) � �(n) = A(n)G(n)(A(N) 
 :::
A(n+1) 
A(n�1) 
 :::
A(1)) = A(n)Z(n);3



CLS(V;�) = 12Pij(Vi;j ��i;j)2 CKL(V;�) =Pij Vi;j logVi;j�i;j �V +�i;jW W � VHT�HT H H �WTVWT� W  W � V�HT1 �HT ; H H � WTV�WT � 1CSparseLS = CLS(V; e�) + �Csparse(H) CSparseKL = CKL(V; e�) + �Csparse(H)W fW � VHT + fWdiag(1 � e�HT � fW)e�HT + fWdiag(1 � eVHT � fW)H H � fWTVfWTe�+� �Csparse(H)�H W fW � Ve�HT + fWdiag(1 �HT � fW)1 �HT + fWdiag(1 � Ve�HT � fW)H H � fWT Ve�fWT�1+� �Csparse(H)�HTable 1: The NMF updates (top) and Sparse NMF updates (bottom) given for LS in left 
olumnand KL in right 
olumn. Csparse(H) is the fun
tion used to penalize the elements in H. Inthe following analysis we'll use Csparse(H) = kHk1. Consequently �Csparse(H)�H = 1. A � Band AB denotes element-wise multipli
ation and division respe
tively while fWi;d = Wi;dkWdk2and e� = fWH.where Z(n) = G(n)(A(N) 
 :::
A(n+1) 
A(n�1) 
 :::
A(1))T . As a result, the updates of ea
h ofthe fa
tors A(n) follows straight forward from the regular NMF updates by ex
hangingW with Aand H with Z in theW update.By lexi
ographi
al indexing of the elements in X and G, i.e. ve
(X ) and ve
(G) also the problemof �nding the 
ore G 
an be formulated in the framework of fa
tor analysis Kolda (2006):ve
(X ) � ve
(L) = Ave
(G)Where A = A(1) 
 A(2) 
 ::: 
 A(N). Consequently, also the update of G follows by the regularNMF updates ex
hangingW with A and H with ve
(G) in the H update. Finally, this update 
anbe expressed in terms of the n-mode multipli
ation sin
eAT ve
(X ) = ve
(X �1 A(1)T �2 A(2)T �3 :::�N A(N)T ):The algorithms for HONMF are summarized in Table 2. Here diag(v) is a matrix having the ve
torv along the diagonal while 1 and T is a matrix and a tensor having ones in all indi
es.A

ording to the Sparse NMF some modalities 
an be kept sparse while the rest are normalized.Consequently, ea
h or some of the A(n) 
an be 
onstrained sparse and/or G, while re-normalizing the
ore and/or the other A(n). As a result sparseness 
an be imposed on any 
ombination of modalitiesin
luding the 
ore while normalizing the remaining modalities. In Table 2 the updates are givenwhen sparsifying or normalizing a given modality. Here kGkF =qPj1j2::::jN G2j1;j2;:::;jN that is k�kFis the regular Frobenious norm for matri
es and tensors respe
tively as de�ned in Kolda (2006) whilekGk1 =Pj1j2::::jN Gj1;j2;:::;jN . When normalizing ea
h of the updated A(n)'s should be normalizedafter being updated, i.e. eAin;d = Ain;dkAdkF while the 
ore normalized by eG = GkGkF .Noti
e,CLS(X(1);�(1)) = CLS(X(2);�(2)) = ::: = CLS(X(N);�(N)) = CLS(ve
X ;Ave
(G))CKL(X(1);�(1)) = CKL(X(2);�(2)) = ::: = CKL(X(N);�(N)) = CKL(ve
X ;Ave
(G)):Consequently ea
h of the updates above minimizes the same 
ost fun
tion. As a result, the 
onver-gen
e of the algorithms for HONMF without sparseness follow straight forward from the 
onvergen
e4



HONMF based on Least squares1. Initialize all A(n) and the 
ore array Grandomly.2. For all n do�(n) = A(n)Z(n)A(n)  A(n) � X(n)ZT(n)�(n)ZT(n)3. L = G �1 A(1) �2 A(2) �3 :::�N A(N)B = X �1 A(1)T �2 A(2)T �3 :::�N A(N)TC = L �1 A(1)T �2 A(2)T �3 :::�N A(N)TG  G � BC4. Repeat from step 2 until some 
onvergen
e
riterion has been satis�ed

HONMF based on KL-divergen
e1. Initialize all A(n) and the 
ore array Grandomly.2. For all n do�(n) = A(n)Z(n)A(n)  A(n) �  X(n)�(n) !ZT(n)�(n)ZT(n)3. L = G �1 A(1) �2 A(2) �3 ::: �N A(N)D = XL �1 A(1)T �2A(2)T �3 :::�N A(N)TE = T �1 A(1)T �2 A(2)T �3 ::: �N A(N)TG  G � DE4. Repeat from step 2 until some 
onvergen
e
riterion has been satis�ed.Table 2: Algorithms for HONMF based on LS and KL minimization.
Normalized SparseLS A(n)  eA(n) � X(n)ZT+eA(n)diag(1�e�(n)ZT �eA(n))e�(n)ZT+eA(n)diag(1�X(n)ZT �eA(n)) A(n)  A(n) � X(n)ZT(n)�(n)ZT(n)+� �Csparse(A(n))�A(n)KL A(n)  eA(n) � 0�X(n)e�(n)1AZT+eA(n)diag(1�1Z�eA(n))e�(n)ZT+eA(n)diag(1� X(n)�(n) !ZT � eA(n)) A(n)  A(n) �  X(n)�(n) !ZT(n)�(n)ZT(n)+� �Csparse(A(n))�A(n)LS G  eG � B+ eGkC� eGk1C+ eGkB� eGk1 G  G � BC+� �Csparse(G)�GKL G  eG � D+eGkE� eGk1E+ eGkD�eGk1 G  G � DE+� �Csparse(G)�GTable 3: Updates when normalizing or imposing sparseness on the various modalities
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of the regular NMF updates given in Lee and Seung (2000) sin
e the estimation was formulated as aseries of regular fa
tor analysis problems minimizing the same 
ost fun
tion. However, the updatesin
luding sparseness has not yet been proved for regular NMF. Eggert and Korner (2004) and Mørupand S
hmidt (2005) 
onje
tured respe
tively the sparse LS and KL algorithms to be 
onvergent. Al-though extensively tested we also never experien
ed any divergen
e of the updates above in
ludingsparseness.The presently developed algorithms for HONMF are attra
tive for several reasons.� The developed algorithms 
an yield unique non-negative de
omposition by �nding the sparsestrepresentation of any 
ombination of modalities.� Often the tensor data has a lot of elements being zero Sun et al. (2005). Sin
e the NMFupdates are very tra
table (i.e. no need for matrix inversion or eigenvalue de
ompositions) thealgorithms are easily adapted to 
onsider only the non-zero elements in X .� Contrary to the HOSVD stru
ture 
an be for
ed into the model forming a supervised algorithm.For instan
e the 
ore or some of the 
ore elements 
an be �xed to for
e known intera
tionsinto the model.� Ea
h iteration of the HONMF is O(I1I2 � ::: � INJ1J2 � ::: � JN ) i.e. grows linearly with theprodu
t of the size of X and G making the 
ost per iteration relatively 
heap 
ompared toexisting algorithms for non-negative Tu
ker de
omposition requiring an iterative 
he
k of theviolation of non-negativity Bro and Andersson (2000); Bro and Jong (1997).� Contrary to HOSVD the ve
tors a
ross modalities intera
t in the estimation pro
ess. As aresult, omitting ve
tors will 
hange the existing ve
tors to a

ount for more of the data.� The NMF is known to 
luster the data rather than proje
ting the data onto the dimensions a
-
ounting for most varian
e Lee and Seung (1999). This in many situations improves 
omponentinterpretability.Needless to say, the algorithms only works when data are non-negative and the 
omponents andintera
tions are 
onsidered purely additive. Admittedly, NMF is known to su�er from slow 
onver-gen
e Salakhutdinov et al. (2003). Consequently, the overall speed of the HONMF algorithm is notbetter than the existing non-unique algorithms.3. ResultsThe algorithms were tested on a syntheti
 data set 
onsisting of 5 images of logi
al operators mixedthrough two modalities. The �ve images forming the third modality along with the mixing matri
esof the two �rst modalities were 
reated su
h that no rotational ambiguity was present between thefa
tors and the Core. The Core was generated by uniform(0; 1) random numbers. The result ofthe de
omposition of the syntheti
 data 
an be seen in Figure 1The algorithms were also tested on a data set 
ontaining the inter trial phase 
oheren
e (ITPC)obtained from wavelet transformed ele
troen
ephalographi
 (EEG) data. This data set has pre-viously been analyzed using PARAFAC and a detailed des
ription of the data set 
an be foundin Mørup et al. (2006). Brie�y stated it 
onsist of 14 subje
t re
orded during a proprio
ep-tive stimuli 
onsisting of a weight 
hange of right hand during odd trials and left hand duringeven trials giving a total of 14 � 2 = 28 trials. Consequently, the data has the following formXChannel�Time�Frequen
y�TrialsITPCvalue . The results of a Tu
ker 3-3-3 model 
an be seen on Figure 2 whilean evaluation of the uniqueness of the de
ompositions is given in Table 4Finally, the algorithms were tested on a data set of XSpe
tra�Time�Bat
hStrength obtained from a �owinje
tion analysis (FIA) system, see Nørgaard and Ridder (1994); Smilde et al. (1999). The data set6



Figure 1: Examples of results obtained when analyzing the syntheti
 data. Leftmost panel: Thetrue 
omponents forming the synthethi
 data. Middle left panel: Components obtainedby the HONMF algorithm based on LS (� = 0 range of data [0;380℄). Middle right panel:Components obtained by the HONMF algorithm based on KL. Rightmost panel: Compo-nents obtained by HONMF based on KL with sparseness on the three fa
tor modalities(� = 1). All de
ompositions a

ounts for more than 99.99% of the varian
e. While the LSalgorithm almost perfe
tly identi�es all 
omponents the KL algorithm has problems iden-tifying the 
omponents of modality 2 however, imposing sparseness the algorithm betteridenti�es the 
omponents.

Figure 2: Analysis of the ITPC data of EEG 
onsisting of 14 subje
ts undergoing weight 
hange ofright hand during odd trials and left hand during even trials. Leftmost panel: Exampleof result obtained when analyzing the data using HONMF. Middle left panel: Resultwhen imposing sparseness on the 
ore (� = 1, range of data [0;0.4℄). Middle right panel:The results obtained from the PARAFAC model 
orresponding to a �xed Core havingones along the super diagonal. Rightmost panel: The results obtained using HOSVD.Clearly, the HONMF model approa
hes the PARAFAC model as sparseness is imposedon the Core. While the HONMF a

ounts for 49.3 % of the varian
e the sparse HONMFa

ounts for 49.11 % of the varian
e whereas the PARAFAC model a

ounts for 48.9 %of the varian
e.Finally, the HOSVD a

ounts for 58.9 % of the varian
e.
7



� 0 1 10 100
LS

Channel :F1 : 0:7416�0:2990(0:3743�0:1352)F2 : 0:8453�0:1032(0:3328�0:0897)F3 : 0:8401�0:0945(0:3976�0:0814)Time� Frequen
y :F1 : 0:8906�0:1937(0:3175�0:0867)F2 : 0:9317�0:0716(0:3077�0:0674)F3 : 0:9313�0:0729(0:3126�0:0851)Trials :F1 : 0:9268�0:0910(0:4050�0:1131)F2 : 0:9538�0:0480(0:4055�0:1215)F3 : 0:8661�0:1609(0:4835�0:0965)Core :0:7420�0:1048(0:2853�0:1776)Explained varian
e :0:4912�0:0027

Channel :F1 : 0:9464�0:0471(0:3427�0:0949)F2 : 0:9492�0:0541(0:3932�0:1072)F3 : 0:9595�0:0381(0:3660�0:1116)Time� Frequen
y :F1 : 0:9753�0:0212(0:3111�0:0378)F2 : 0:9258�0:1254(0:3108�0:0378)F3 : 0:9368�0:1312(0:3277�0:0484)Trials :F1 : 0:9657�0:0222(0:3465�0:1702)F2 : 0:9585�0:1485(0:4852�0:0674)F3 : 0:9664�0:1161(0:4620�0:0674)Core :0:9139�0:0383(0:2793�0:1244)Explained varian
e :0:4909�0:0017

Channel :F1 : 1:000�0:000(0:3813�0:1400)F2 : 1:000�0:000(0:3636�0:1631)F3 : 1:000�0:000(0:3417�0:1072)Time � Frequen
y :F1 : 1:000�0:000(0:2812�0:0380)F2 : 1:000�0:000(0:3259�0:0661)F3 : 1:000�0:000(0:3329�0:0555)Trials :F1 : 1:000�0:000(0:4268�0:1402)F2 : 1:000�0:000(0:3897�0:1815)F3 : 1:000�0:000(0:3947�0:1375)Core :0:6963�0:3535(0:3473�0:1470)Explained varian
e :0:3695�0:0000

Channel :F1 : 1:000�0:000(0:3428�0:1195)F2 : 1:000�3:4700:000(0:3657�0:1406)F3 : 1:000�3:3870:000(0:3914�0:1305)Time� Frequen
y :F1 : 1:000�0:000(0:3327�0:0398)F2 : 1:000�0:000(0:3288�0:0417)F3 : 1:000�0:000(0:2935�0:0210)Trials :F1 : 1:000�0:000(0:3681�0:0972)F2 : 1:000�0:000(0:4116�0:1434)F3 : 1:000�0:000(0:4507�0:1347)Core :0:3561�0:1493(0:3094�0:1141)Explained varian
e :�0:2600�0:0000Table 4: Mean 
orrelation between the fa
tors of 10 runs with sparseness imposed on the 
ore arrayranging from 0 to 100 here given for LS. In parenthesis are the 
orrelations obtained by ran-dom (estimated by permutating the indi
es of the fa
tors and 
al
ulating their 
orrelation).Clearly imposing sparseness improves uniqueness (
orrelation between ea
h de
omposition)however if the sparseness imposed on the 
ore is too strong all fa
tors be
omes identi
alonly 
apturing the mean a
tivity while the 
ore is arbitrary due to the identi
al fa
tors).The KL algortihm gave similar results.

Figure 3: The result obtained analyzing the FIA data by a Tu
ker 6-6-6 model based on LS withsparsity on the Core and mixing modality (� = 0:5). 10 de
ompositions all resulted invery 
onsistent results - mean 
orrelation between the various 
omponents of ea
h modality0:9847� 0:0396(0:4008� 0:1736). Furthermore, the estimated mixing was 
orrelated by0:9550� 0:0648(0:3258� 0:1863) to the true mixing. The 10 de
ompositions on averageexplained 0:9972� 0:0007 of the varian
e.8



has been analyzed through various supervised models using among other the prior knowledge of the
on
entration in ea
h bat
h Nørgaard and Ridder (1994); Smilde et al. (1999). However, presentlywe employed a sparse HONMF to see if this algorithm 
ould 
apture the underlying stru
ture inthe data unsupervised. To give an easy interpretable model and improve uniqueness of the bat
h
on
entrations found sparseness was imposed on both the 
ore and bat
h modality (� = 0:5, rangeof data [0;0.637℄) The results of the sparse Tu
ker 6-6-6 de
omposition is given in Figure 34. Dis
ussionFrom the HONMF de
omposition of the syntheti
ally generated data set it was seen that the KL butespe
ially LS 
aptured well the true 
omponents. Although the fa
tors found slightly deviate fromthe true fa
tors espe
ially on modality 2 imposing sparseness on the fa
tors improved the algorithmsability to 
orre
tly identify the 
omponents as revealed for the KL results.In the analysis of the ITPC of EEG data, it was seen in Table 4 that ea
h un
onstrained HONMFde
omposition only was 
orrelated by about 70-90%. However, when imposing sparseness on the
ore a more unique de
omposition was a
hieved hen
e a 
orrelation well above 90% between the
omponents of the Fa
tors and Core of the 10 de
ompositions while only slightly a�e
ting theexplained varian
e. However, by in
reasing sparseness too mu
h only the mean a
tivity was 
apturedin all the 
omponents. Consequently the fa
tors were all perfe
tly 
orrelated to ea
h other whilethe 
ore 
ould be arbitrarily 
hosen as long as the sum of the 
ore elements remained the same.It was further seen that imposing sparseness on the data made the de
omposition resemble the
orresponding PARAFAC de
omposition. This indi
ates that the PARAFAC de
omposition ratherthan the full Tu
ker model is a reasonable model to the data. Consequently, the Tu
ker modelwith sparsity imposed on the 
ore 
an indi
ate wether a PARAFAC or a Tu
ker model is the mostreasonable model to the data at hand. Although the HOSVD a

ounts for more varian
e sin
e
an
ellation of fa
tors are allowed, the de
omposition is di�
ult to interpret. While the last fa
torin the trial modality 
learly di�erentiates between left and right side stimulation and the se
ond andthird s
alp 
omponent di�erentiates between frontal parietal and left right a
tivity the interpretationof the intera
tions between these 
omponents are di�
ult to resolve from the 
omplex pattern ofintera
tion given by the 
ore. Consequently, although the HONMF model a

ounts for less varian
eit is easier to interpret sin
e it 
learly gives a more part based de
omposition.Finally, the analysis of the FIA data gave a very 
onsistent de
omposition. By imposing sparse-ness on the 
ore and Bat
h modality the model 
aptured well the true 
on
entrations in the bat
has well as giving a sparse Core improving the interpretatibility. Consequently, imposing sparseness
ould turn of unne
essary ex
ess fa
tors as well as 
apturing the true stru
ture in the data unsu-pervised rather than resorting to supervised approa
hes as previously done Nørgaard and Ridder(1994); Smilde et al. (1999) presently 
apturing well the true 
on
entrations in the bat
hes.Admittedly, the present HONMF has two drawba
k. The 
hoi
es of � is not obvious while tosome extent impa
ting the de
ompositions found. Furthermore, NMF and therefore also HONMF isknown to su�er from slow 
onvergen
e Salakhutdinov et al. (2003). Presently, the algorithmss werea

elerated as proposed for NMF by Salakhutdinov et al. (2003).5. Con
lusionIt is our strong belief that the HONMF algorithms proposed will be useful in the analysis of a varietyof higher order data. Presently, the HONMF gave a more easy interpretable de
omposition than theHOSVD. Furthermore, imposing 
onstraints of sparseness signi�
antly improved the uniqueness ofthe de
omposition as well as being a tool for model sele
tion.
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